Revision as of 08:48, 8 October 2010 by Bell (Talk | contribs)

Homework 7 collaboration area

Question: What exactly is 6.2, #9 asking when it says to use another method to find the laplace transform for Prob 1? (AM, 07-Oct)

Answer: I think they just want you to show that it can be computed in two ways. In problem 1, you probably used the identity

L[f'] = s F(s) - f(0).

To compute the same Laplace transform a second way, you could integrate directly from the definition of the Laplace transform, or maybe you could use

L[f"] = s^2 F(s) - s f(0) - f'(0)

to get the same answer as problem 1.

Sec6.3 P240 #8: I have it written out as

f(t)=[u(t-0)-u(t-pi)]*(1-e^(-t)).

I'm stuck on how to work out (1-e^(-t)). In the previous problem, #5, it was easy to make t^2 into [(t-1)+1]^2 or [(t-2)+2]^2 and essentially not change the function. However, that's not the case with (1-e^(-t)) and I don't know what to do with it.

Answer: Do the same thing:

$ 1-e^{-t}=1-e^{-[(t-\pi)+\pi]}=1-e^{-\pi}e^{-(t-\pi)} $


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett