Revision as of 12:08, 12 September 2010 by Mboutin (Talk | contribs)

Question about computing the inverse z-transform


Computation of inverse z-transform by a student (with question about how to obtain ROC)

Take $ x[n] = a^n\left( u[n-2]+u[n]\right) $. We then have

$ \begin{align} X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n} \text{ (by definition of the z-transform)},\\ &= \sum_{n=-\infty}^\infty a^n(u[n-2]+u[n])z^{-n}, \\ &= \sum_{n=2}^\infty a^n(z^{-n}) + \sum_{n=0}^\infty a^n(z^{-n}). \\ \text{Now let }k=-n, \\ \Rightarrow X(z) &= \sum_{k=-2}^\infty (a/z)^n + \sum_{k=0}^\infty (a/z)^n ,\\ &=\sum_{k=0}^\infty \left( (a/z)^n + 2)\right) + \sum_{k=0}^\infty \left( \frac{a}{z}\right)^n \\ & = \left(\frac{1}{1-a/z}+2\right) + \left(\frac{1}{1-a/z}\right), \\ & = \frac{z}{z-a}+2 + \frac{z}{z-a}, \\ & = \frac{z}{z-a}+2\frac{z-a}{z-a} + \frac{z}{z-a} , \\ & = \frac{4z-2a}{z-a}, \\ & = \frac{4-2a/z}{1-a/z}, \text{ for } |z|<a ??? \end{align} $

So if I end up with something that says 1/1-(1/z), I am confused. does it converge when |z|>a or when |z|<a?

~ksoong

Comments/corrections from Prof. Mimi

Take $ x[n] = a^n(u[n-2]+u[n]) $. We then have $ \begin{align} X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n} \text{ (by definition of the z-transform)}, {\color{OliveGreen}\surd}\\ &= \sum_{n=-\infty}^\infty a^n(u[n-2]+u[n])z^{-n}, {\color{OliveGreen}\surd} \\ &= \sum_{n=2}^\infty a^n(z^{-n}) + \sum_{n=0}^\infty a^n(z^{-n}). {\color{OliveGreen}\surd} \\ \text{Now let }k=-n,& {\color{red}\text{This change of variable is not useful, unfortunately.}} \\ \Rightarrow X(z) &= \sum_{k=-2}^{\color{red}-\infty} (a/z)^{\color{red}n} + \sum_{k=0}^\infty (a/z)^{\color{red}n} ,{\color{red}\text{The terms inside the summation contain n, but the summation is over k.}} \\ &=\sum_{k=0}^{\color{red}-\infty} \left( (a/z)^n {\color{red} -(a/z)^{-2}-(a/z)^{-1}} )\right) + \sum_{k=0}^\infty \left( \frac{a}{z}\right)^n \\ & = \left(\frac{1}{1-a/z}+{\color{red} -(a/z)^{-2}-(a/z)^{-1}} )\right) + \left(\frac{1}{1-a/z}\right), {\color{red}\text{For this last step, you need to assume } \left| \frac{a}{z}\right|<1, \text{ else both sums diverge.}} \end{align} $

The answer to your initial question ("if I end up with something that says 1/1-(1/z), I am confused. does it converge when |z|>a or when |z|<a?") is in the last step. As you can see from this step, X(z) only converges if |a|<|z|. Note that, since a could be a complex number, it is important not to say a< |z|


Anybody sees anything else? Do you have more questions? Comments? Please feel free to add below.


Back to ECE438, Fall 2010, Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett