Revision as of 16:07, 4 March 2010 by Jhunsber (Talk | contribs)

In linear algebra, vectors $ v_1, v_2... v_n $ form a basis for the subspace V when

If V is a subspace of $ \mathbb R^m $ it follows that n must be less than or equal to m.

Note that there can be more than one set of vectors that form a basis for the same space. In fact, there are an infinite number of bases (plural of basis) for a subspace provided the subspace is not just $ \vec 0 $. However, all bases for a given subspace have the same number of vectors. This number of vectors is called the dimension of the subspace.

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman