Revision as of 08:40, 1 February 2010 by Pritchey (Talk | contribs)

Example: Let $ \mathbb{X} $ and $ \mathbb{Y} $ be jointly distributed discrete random variables with ranges $ X = \{0, 1, 2, 3, 4\} $ and $ Y = \{0, 1, 2\} $ respectively.

Suppose that the conditional distributions $ P_{\mathbb{X}|\mathbb{Y}} $ are empirically estimated as follows:


$ x $ 0 1 2 3 4
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=0) $ .175 .635 .159 .000 .031


$ x $ 0 1 2 3 4
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=1) $ .048 .000 .143 .238 .571


$ x $ 0 1 2 3 4
$ P_{\mathbb{X}|\mathbb{Y}}(x|y=2) $ .188 .562 .250 .000 .000


and the marginal $ P_{\mathbb{Y}} $ is empirically estimated as:


$ y $ 0 1 2
$ P_{\mathbb{Y}}(y) $ .63 .21 .16

Estimate the conditional distributions $ P_{\mathbb{Y}|\mathbb{X}} $



By definition $ P_{\mathbb{X}|\mathbb{Y}}(x|y) = \frac{P_{\mathbb{X},\mathbb{Y}}(x,y)}{P_{\mathbb{Y}}(y)} $, so the joint distribution $ P_{\mathbb{X},\mathbb{Y}}(x,y) $ can be computed.

$ P_{\mathbb{X},\mathbb{Y}}(0,0) = P_{\mathbb{X}|\mathbb{Y}}(0|0)P_{\mathbb{Y}}(0) = .175 \cdot .63 = .11 $

Computing the rest of the distribution similarly:

$ P_{\mathbb{X},\mathbb{Y}}(x,y) $
0 1 2 3 4
0 .11 .40 .10 .00 .02
1 .01 .00 .03 .05 .12
2 .03 .09 .04 .00 .00

The marginal distribution $ P_\mathbb{X} $ can be extracted from the joint distribution as:

$ P_\mathbb{X}(x) = \sum_{y\in Y} P_{\mathbb{X},\mathbb{Y}}(x,y) $

$ P_\mathbb{X}(0) = .11 + .01 + .03 = .15 $

Computing the rest of the distribution similarly:


$ x $ 0 1 2 3 4
$ P_{\mathbb{X}}(x) $ .15 .49 .17 .05 .14


Finally $ P_{\mathbb{Y}|\mathbb{X}} $ can be computed by definition.

$ P_{\mathbb{Y}|\mathbb{X}}(0|0) = \frac{P_{\mathbb{X},\mathbb{Y}}(0,0)}{P_{\mathbb{X}}(0)} = \frac{.11}{.15} = .733 $

Computing the rest similarly:


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=0) $ .733 .067 .200


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=1) $ .816 .000 .184


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=2) $ .588 .176 .236


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=3) $ .000 1.00 .000


$ y $ 0 1 2
$ P_{\mathbb{Y}|\mathbb{X}}(y|x=4) $ .143 .857 .000


Note from these $ P_{\mathbb{Y}|\mathbb{X}} $ distributions that for large $ x $ it is highly probable that $ y=1 $ and for small $ x $ it is highly probable that $ y=0 $.

--Jvaught 22:34, 29 January 2010 (UTC)


Back to 2010 Spring ECE 662 mboutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang