Revision as of 15:59, 22 January 2010 by Kumar49 (Talk | contribs)

Post your favorite theorem and discuss it a little.

I don't have a favorite theorem necessarily, but here's one of my favorites: http://en.wikipedia.org/wiki/Banach%E2%80%93Tarski_paradox

This is a completely counterintuitive notion of which I have virtually no understanding, but it has that wonderful mysterious and paradoxical quality that can only be achieved by mathematics. Uli, why don't you list one of your favorites?

Does anyone have any idea how the extra credit questions work? Can we turn them in at any time or are certain ones due by a specific date?

My personal favorite are Zeno's paradoxs.http://en.wikipedia.org/wiki/Zeno_paradox. Every one of them seems to be valid mathematically, but all of them defy common sense. The reason for this is that Zeno bases the the assumption that you cannot infinitely divide something. Eventually you get to the smallest unit of time or distance, and then you can't break it down anymore.

I dont have any theorems in mind but i always wanted to derive the general formula of a fibonnaci sequence based of basic math like not using the ideas of progression or any other general forms.If we could do it any way that is similar to Gauss.

I was thinking about Zeno's paradox and I think that someone(either my math teacher or Archimedes :)) said that it is possible to break down Zeno's problem into infinitely many decreasing terms and then summing the resulting geometric progression to get a finite number and therefore, solve the problem. This seems mathematically valid but nevertheless, rather counter-intuitive.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett