Revision as of 11:45, 2 December 2009 by Mcvaught (Talk | contribs)


HW 12

Does anyone know how to do 2, 3, 5, 7, or 8?

  • Here's what I did for problem two. Construct along EF a length equal to BC (prop 2), then construct an angle, at E, called MEF, such that angle MEF = angle ABC (prop 23). Then construct along segment EM a length EN equal to AB. Proposition four suggests triangles NEF and ABC are congruent, and from there the argument is more or less the same.
  • For number seven, think about theorem sixteen. That should tell you which extra line you're drawing in each triangle. Once you've done that, the solution should become pretty clear.

-Do you have any information about #7 because we can't seem to get them congruent because we cannot compare angles between triangls, only within triangles

any hints for # 1?

  • for number 1 I found three sets of similar triangles (DBI~FBI, FCI~ECI, EAI~DAI). Then when you set up the ratios you get three things equal to 1 (DB/FB, EA/DA, FC/EC). Then you can multiple those all together and change them to signed ratios.

Any suggestions for #3?

Back to MA460 (Fall2009Walther) Homework

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal