Revision as of 17:18, 29 July 2009 by Wmulflur (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Synchronous Demodulation ->

  Assume that $ w_c > w_m  $ and consider the signal: 
     y(t)=x(t)$ cosw_c t $  
  The original signal can be recovered by modulating y(t) with the same sinusoidal carrier and applying a low pass filter to the 
  result.  
     w(t)=y(t)$ cosw_c $t 
         =x(t)$ cos^2 w_c $t
  Use the trig identity   
     $ cos^2 w_c $t=(1/2)+(1/2)$ 2cosw_c $t 
  We can rewrite as 
     w(t)=(1/2)x(t)=(1/2)x(t)$ 2cosw_c $t 
  In this process the demodulating signal is assumed to be synchronized in phase with the modulating signal.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang