Revision as of 18:44, 17 June 2009 by Hho (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

$ x(t)=\sqrt(t) $

Compute $ E\infty $ and $ P\infty $

$ E\infty=\int_{-\infty}^\infty |x(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty |\sqrt(t)|^2dt $

$ E\infty=\int_{-\infty}^\infty tdt $

$ E\infty=\int_{-\infty}^0 tdt +\int_{0}^\infty tdt $

$ E\infty=0.5 t^2|_{-\infty}^0 + 0.5t^2|_{0}^\infty $

$ E\infty=\infty $

$ P\infty=\lim_{T->\infty}1/(2T)\int_{-T}^T |x(t)|^2dt $

$ P\infty=\lim_{T->\infty}1/(2T)\int_{-T}^T |\sqrt(t)|^2dt $

$ P\infty=\lim_{T->\infty}1/(2T)*0.5t^2|_{-T}^T $

$ P\infty=\lim_{T->\infty}1/(2T)*(1/2(-T)^2+1/2(T)^2) $

$ P\infty=\lim_{T->\infty}T/4 $

$ P\infty=\infty $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang