Revision as of 10:37, 1 November 2008 by Jmason (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

I have been working out some cases where I can't integrate through trigonometric substitutions (or at least, not easily) but I can using hyperbolic functions. See if you can solve

$ \int x^2\sqrt{x^2+1}dx $

Special points if you can solve it using trig functions.

The method and thought process

Identities you will need

--John Mason

Why couldn't you substitute x^2+1 for u and say x^2 = u-1. then, distribute and just use the power rule. There is no need for trig substitution for this. - G Briz

That works wonder if the first part of the integral is x to the third power, but in this case, you end up with an uneliminatable x in the derivative of u. -- John Mason

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman