Revision as of 10:03, 22 July 2008 by Dvtran (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

By Fatou's Lemma, we get the upper bound is 1 and since all the functions $ f_{n}\frac{}{} $ are positive, we get the lower bound is 0. This is as good as it get. Examples:

Let $ \Omega=[0,1]\frac{}{} $, the $ \sigma- $algebra is the power set and counting measure.

Example 1:

For $ n $ odds, $ f_{n}(x)=1\frac{}{} $ if $ x=\frac{1}{n} $, $ 0\frac{}{} $ otherwise.

For $ n $ even, $ f_{n}(x)=3\frac{}{} $ if $ x=\frac{1}{n} $, $ 0\frac{}{} $ otherwise.

Example 2:


For $ n $ odds, $ f_{n}(x)=1\frac{}{} $ if $ x=1\frac{}{} $, $ 0\frac{}{} $ otherwise.

For $ n $ even, $ f_{n}(x)=1\frac{}{} $ if $ x=1\frac{}{} $, $ f_{n}(x)=2\frac{}{} $ if $ x=\frac{1}{n} $, $ 0\frac{}{} $ otherwise.

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison