Revision as of 11:22, 30 June 2008 by Mmize (Talk)

We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.

$ y(t) = h(t) * x(t) = \int_{-\infty}^\infty h(\tau)x(t - \tau)d(\tau) $

Plugging in the given x(t) and h(t) values results in:

$ y(t) = \int_{-\infty}^\infty e^{-\tau}u(\tau)u(t - \tau - 1)d(\tau) $

$ = \int_0^\infty e^{-\tau}u(t - \tau - 1)d(\tau) $

$ = \int_0^{t-1} e^{-\tau}d(\tau) = 1 - e^{-(t - 1)} $ for t > 1


Since x(t) = 0 when t < 1:

y(t) = 0 for t < 1

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison