Revision as of 11:06, 1 March 2009 by Kim415 (Talk | contribs)

a)

$ H(z) = \frac{1 - \frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}} = \frac{(1 - \frac{1}{\sqrt{2}}z^{-1})(1 + \frac{1}{\sqrt{2}}z^{-1})}{(1-\frac{1}{2\sqrt{2}}+\frac{j}{2\sqrt{2}}z^{-1})(1-\frac{1}{2\sqrt{2}}-\frac{j}{2\sqrt{2}}z^{-1})} $


$ zero = \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} $

$ pole = \frac{1}{2\sqrt{2}}+\frac{j}{2\sqrt{2}},\frac{1}{2\sqrt{2}}-\frac{j}{2\sqrt{2}} $--Kim415 16:04, 1 March 2009 (UTC)

b) check out the the Prof. --Kim415 16:04, 1 March 2009 (UTC)Allebach's useful lecture note for this problem.

c) unstable, because it is recursive equation and some output will go to the infinite from the certain input value which is bounded.--Kim415 16:04, 1 March 2009 (UTC)

d)

$ H(z) = \frac{1 - \frac{1}{2}z^{-2}}{1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}} $
$ Y(z)(1-\frac{1}{\sqrt{2}}z^{-1}+\frac{1}{4}z^{-2}) = X(z)(1 - \frac{1}{2}z^{-2}) $
$ y[n] - \frac{1}{\sqrt{2}}y[n-1] + \frac{1}{4}y[n-2] =x[n] - \frac{1}{2}x[n-2] $
$ y[n] = x[n] - \frac{1}{2}x[n-2] + \frac{1}{\sqrt{2}}y[n-1] - \frac{1}{4}y[n-2] $
--Kim415 16:05, 1 March 2009 (UTC)

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva