Revision as of 07:36, 10 February 2009 by Hu (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Grading format:
Similar to the grading format of HW1, HW2 is graded for completeness as well as theoretical understanding of course material.

Correction to original solution Q3:
The graph for x[n-k] should be 0 at n, and 1's from n+1 to n+10
The correct solution (as Kim described) is as follows:
y[n]=0 for n<-10
y[n]=n+11 for -10<=n<=-1
y[n]=9-n for 0<=n<=8
y[n]=0 for n>8


Comments:
- In Q2, $ (-1)^n = e^{j\pi n} $.
- When computing the DTFT using the summation formula, note that some expressions are in the form of geometric series.
- In Q3, convolution must be separated into various cases. The analytical expression will vary depending on the case. Also, drawing the signals is very helpful.

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison