Revision as of 17:26, 7 February 2009 by Kim415 (Talk | contribs)

1 a)

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $

Based on the Prof Alen's note page 179

$ x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2) $


b)

$ x_(t) \,\!= \cos(\frac{\pi}{2})rect(\frac{t}{2}) $

Based on the Prof Alen's note page 179

$ x_(f) \,\!= \frac{1}{2}( \delta (f - \frac{1}{4}) + \delta (f + \frac{1}{4}))sinc(t/2) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett