Revision as of 04:54, 18 August 2010 by Mboutin (Talk | contribs)

When are vectors linearly independent?

A (finite) set of vectors $ v_1, v_2...v_m $is said to be linearly independent if and only if the equality $ k_1v_1+k_2v_2+...k_mv_m=0 $ is true exactly when all the k values are 0.

This is equivalent to saying you can't come up with any linear combination of $ v_1 $ and $ v_2 $ that equals v_3, or $ v_1...v_3 $ that equals $ v_4 $... or $ v_1...v_{m-1} $ that equals $ v_m $.

If a set of vectors are not linearly independent, then they are linearly dependent.


Back to Linear Algebra Resource

Back to MA351

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett