Revision as of 16:06, 1 October 2008 by Narupley (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

$ \scriptstyle\phi $ is a homomorphism from $ \scriptstyle G $ to $ \scriptstyle H $. Thus, we know that $ \scriptstyle\phi(ab) = \phi(a)\phi(b) | a,b\in G $. $ \scriptstyle\sigma $ is a homomorphism from $ \scriptstyle H $ to $ \scriptstyle K $. Thus, we know that $ \scriptstyle\sigma(ab) = \sigma(a)\sigma(b) | a,b\in H $.

Then, $ \scriptstyle\sigma\phi(ab) = \sigma(\phi(ab)) = \sigma(\phi(a)\phi(b)) = \sigma(\phi(a))\sigma(\phi(b)) = \sigma\phi(a)\sigma\phi(b) $. We've shown that the group operation is preserved in a mapping $ \scriptstyle\sigma\phi $ from $ \scriptstyle G $ to $ \scriptstyle K $, so $ \scriptstyle\sigma\phi $ is therefore a homomorphism from $ \scriptstyle G $ to $ \scriptstyle K $. $ \scriptstyle\Box $

--Nick Rupley 21:02, 1 October 2008 (UTC)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn