Revision as of 15:54, 24 November 2008 by Lee251 (Talk)

The relationship between Fourier and Laplace transform

The continuous-time Fourier transform provides us with a representation for signals as linear combinations of complex exponentials of the form $ e^{st} $ with $ s=j\omega $.

For s imaginary (i.e., $ s=jw $), $ X(j\omega)=\int_{-\infty}^{\infty}x(t){e^{-j\omega t}}\, dt $ which corresponds to the Fourier transform of x(t).

For general values of the complex variable s, it is referred to as the Laplace transform of the signal. The complex variable zs can be written as $ s=\sigma+j\omega $, with $ \sigma $ and $ \omega $ the real and imaginary parts, respectively.


$ X(\sigma+j\omega)=\int_{-\infty}^{\infty}x(t){e^{-(\sigma+j\omega) t}}\, dt $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn