Revision as of 11:25, 24 November 2008 by Mgoklani (Talk)

Laplace Transforms

Laplace Transforms provide a very convenient method of solving differential equations, transforming from the time domain to the s domain, where s is a complex number of form $ S = \sigma + j\omega $


The bilateral Laplace transform of f(t) is defined as

$ X(s) = \int^{\infty}_{-\infty}x(t)e^{-st}dt $


Now let us deal with the region of convergence ( those values for which the laplace transform converges )

Let :$ x(t) = e^{-2t} u (t) $

Thus, $ X(s) = \int^{\infty}_{0}e^{-2t}e^{-st}dt $

$ X(s) = \int^{\infty}_{0}e^{-(2+s)t}dt $
           = $ \frac{1}{s+2} $  if Re(s) > -2
           = 0     else

Hence ROC : Re (s) > -2

Let :$ x(t) = -e^{-2t} u (-t) $

Thus, $ X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-st}dt $

$ X(s) = \int^{0}_{-\infty}-e^{-(2+s)t}dt $
           = $ \frac{1}{s+2} $  if Re(s) < -2
           = 0     else

Hence ROC : Re (s) < -2

Here we observe that the two different signals have the same laplace transform

In such cases we should be careful while taking the inverse laplace transform.Thus while looking at the table od inverse laplace transform we should pay utmost importance to the region of convergence specified with the given laplace transform.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang