Revision as of 13:09, 23 November 2008 by Bchanyas (Talk)

This page shows an example of LT transform computation

let $ x(t) = -e^{-2t}u(-t) $

then

$ X(s) = \int^{\infty}_{-\infty}x(t)e^{-st}dt $
$ X(s) = \int^{\infty}_{-\infty}-e^{-2t}u(-t)e^{-st}dt $
$ X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-st}dt $

Now let $ s = a + jw $

$ X(s) = \int^{0}_{-\infty}-e^{-2t}e^{-(a+jw)t}dt $
$ X(s) = \int^{0}_{-\infty}-e^{-(2+a)t}e^{-jwt}dt $
$ X(s) = -\frac{e^{-(2+a)t}e^{-jwt}}{-(2+a+jw)} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett