Revision as of 16:37, 24 October 2008 by Sje (Talk)

System Characterized By Linear Constant-Coefficient Differential Equations

$ \sum_{k=0}^{N}a_k\frac {d^ky(t)}{dt^k} = \sum_{k=0}^{M}b_k\frac {d^kx(t)}{dt^k} $

=$ Y(jw)=H(jw)X(jw), H(jw)=\frac{Y(jw)}{X(jw)} $

Example

Consider a LTI system that is chracterized by the differential equation


$ \frac{d^2y(t)}{dt^2}+4\frac{dy(t)}{dt}+3y(t) = \frac{dx(t)}{dt}+2x(t) $


$ H(jw)=\frac{(jw)+2}{(jw)^2+4(jw)+3} $


$ H(jw)=\frac{jw+2}{(jw+1)(jw+3)} $

$ H(jw)=\frac{\frac{1}{2}}{jw+1} + \frac{\frac{1}{2}}{jw+3} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva