Revision as of 09:44, 24 October 2008 by Bchanyas (Talk)

If we were asked to compute the frequency response, one thing that we need to keep in mind is that, no matter how complexed the problem might look, we have to somehow arrange it into $ Y(w) = H(w)X(w) $ format. Obviously, $ H(w) $ is the frequency response. The following example would illustrate this:

Find the frequency response of: $ y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n] $

First, we do the Fourier transform on both sides, which yields:

$ Y(w) - \frac{3}{4}e^{-jw}Y(w) + \frac{1}{8}e^{-2jw}Y(w) = 2X(w)\, $

Now we try to collect terms in order to attempt to make the problem resemble the mentioned format:

$ (1 - \frac{3}{4}e^{-jw} + \frac{1}{8}e^{-2jw})Y(w) = 2X(w) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang