Revision as of 18:05, 20 October 2008 by Drmorris (Talk)

Example 1

Compute the Fourier Transform of $ x(t)=e^{-t}u(t) $.

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ =\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt $

$ =\int_{0}^{\infty}e^{-t}e^{-j\omega t}dt $

$ =\int_{0}^{\infty}e^{-(1+j\omega )t}dt $

$ =[\frac {e^{-(1+j\omega )t}}{-(1+j\omega)}]|_0^\infty $

$ =\frac {e^{-(1+j\omega )\infty}}{-(1+j\omega)}-\frac {e^{-(1+j\omega )0}}{-(1+j\omega)} $

$ =0+\frac {1}{(1+j\omega)} $

$ =\frac {1}{(1+j\omega)} $

Example 2

Example 2

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal