Computing the Inverse Fourier Transform
$ \ X(\omega)= 8 \pi w \delta(w-9) + 2 \pi w^{3} \delta(w-4 \pi) $
The inverse Fourier transform is defined as:
$ x(t) = \int_{-infty}^{infty} \frac{X(w)}{2 \pi} e^{jwt} dw $
$ \ X(\omega)= 8 \pi w \delta(w-9) + 2 \pi w^{3} \delta(w-4 \pi) $
The inverse Fourier transform is defined as:
$ x(t) = \int_{-infty}^{infty} \frac{X(w)}{2 \pi} e^{jwt} dw $