Revision as of 11:30, 16 September 2013 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Problem 2 Fourier Transfer

$ x(t) = \cos{\pi t} $

$ F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $

$ = \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} + \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009