Revision as of 11:50, 16 September 2013 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


For the signal:

$ X(\omega)= 2\pi \delta(\omega) + 3\pi \delta(\omega - 3\pi) - 4\pi \delta(\omega + 5\pi) $

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^\infty (2\pi \delta(\omega) + 3\pi \delta(\omega - 3\pi) - 4\pi \delta(\omega + 5\pi)) e^{j\omega t} \mathrm{d}\omega $

$ = \int_{-\infty}^\infty ( \delta(\omega) + \frac{3}{2} \delta(\omega - 3\pi) - 2 \delta(\omega + 5\pi)) e^{j\omega t} \mathrm{d}\omega $

$ x(t) = 1 + \frac{3}{2}e^{j3\pi t} - 2e^{-5\pi t} $



Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang