Revision as of 15:43, 7 October 2008 by Drecord (Talk)

Fourier Transform

Signal: x(t) = $ e^{3|t-1|} $

$ X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $

$ = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $ + $ \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \! $


... LOTS OF MATH...


= $ \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega} $


= $ \frac{4e^{-j \omega}}{4 + \omega ^2} $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009