Revision as of 12:46, 16 September 2013 by Rhea (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


$ X(\omega ) = \delta(\omega ) + \delta(\omega - 5) + \delta(\omega - 5)\, $

$ x(t) = \int_{-\infty}^{\infty}X(\omega )e^{j\omega t}d\omega\, $

$ = \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega )e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega - 5)e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega + 5)e^{j\omega t}d\omega\, $

$ = \frac{1}{2\pi}*1 + \frac{1}{2\pi}*e^{5jt} + \frac{1}{2\pi}*e^{-5jt}\, $

$ = \frac{1}{2\pi} * (1 + 2cos(5t))\, $


I'll add another one when i have time


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang