Revision as of 09:23, 3 October 2008 by Jpfister (Talk)

Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega $



$ X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j) $



$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{j\omega t}d\omega $

$ =\frac{2-3j}{2}\int_{-\infty}^{\infty}\delta(\omega - 4\pi)e^{j\omega t}d\omega + \frac{2+3j}{2}\int_{-\infty}^{\infty}\delta(\omega + 4\pi)e^{j\omega t}d\omega $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang