Revision as of 09:20, 3 October 2008 by Jpfister (Talk)

Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{-j\omega t}d\omega $

$ X(\omega) = \pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j) $

$ x(t)\frac{1}{2\pi}\int_{-\infty}^{\infty}[\pi\delta(\omega - 4\pi)(2-3j) + \pi\delta(\omega + 4\pi)(2+3j)]e^{-j\omega t}d\omega $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva