Revision as of 16:50, 26 September 2008 by Choi88 (Talk)

Preview

   This is only a preview; changes have not yet been saved! (????)

DT LTI System Part a



$ h[n] = cos[{\pi \over 3} n]u[n] $

and the input signal,

$ x[n] = 1 + e^{j({2\pi \over N})n}[{1 \over 2j} + {5 \over 2}] - e^{-j({2\pi \over N})n}[{1 \over 2j} - {5 \over 2}] - ({7 \over 2j}e^{-j{\pi \over 2}})e^{-j2({2\pi \over N}n)} + ({7 \over 2j}e^{j{\pi \over 2}})e^{j2({2\pi \over N}n)} $


$ H(e^{jw}) = \sum_{k=0}^{\infty} cos[{\pi \over 3} n]e^{-jwn} = \sum_{k=0}^{\infty} {1 \over 2}(e^{j{\pi \over 3}n} + e^{-j{\pi \over 3}n})e^{-jwn} $


$ = \sum_{k=0}^{\infty} {1 \over 2} (e^{j({\pi \over 3} - w)n} + e^{-j({\pi \over 3} + w)n}) $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison