Revision as of 15:31, 26 September 2008 by Hartmand (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Part A

Consider the system:

$ y(t)=\int_{-\infty}^{\infty}3x(t-1)dt $

The unit impulse response is then $ h(t) =3u(t-1) $

Using $ H(s) = \int_{-\infty}^{\infty}h(t)e^{-st}dt $

we find that

$ H(s) = \int_{-\infty}^{\infty}3u(t-1)e^{-st}dt $

$ =\int_{1}^{\infty}3e^{-st}dt $

$ =(\frac{-3}{s}e^{-st})|_{1}^{\infty} $

$ =\frac{3}{s} $

Part B

The Fourier series coefficients in $ x(t)=cos(3 \pi t) + sin(8 \pi t) $ are:

$ a_{3} = \frac{1}{2} $

$ a_{-3} = \frac{1}{2} $

$ a_{8} = \frac{1}{2j} $

$ -a_{-8} = \frac{1}{2j} $

For $ k \neq [3,-3,8,-8], a_{k} $ = 0

The response of the input $ x(t) $ to the system $ y(t) $ using $ H(s) $ and the above coefficients is:

$ y(t)=\sum_{k=-\infty}^{\infty}a_{k}H(s) $

$ =\frac{1}{s} + \frac{1}{s} + \frac{1}{sj} - \frac{1}{sj} $

$ =\frac{2}{s} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett