Revision as of 14:59, 26 September 2008 by Vhsieh (Talk)

CT LTI system

My CT LTI system is (drum roll please)...


$ y(t)=5x(t - 2) - 3x(t)\! $


Unit Impulse Response

Well, this is rather straightforward. You want the response to the unit impulse, do ya? Well, if that is what you want, that is what you will get. All you have to do is replace the $ x(t)\! $ with $ \delta(t)\! $, also known as the notorious delta function.


$ h(t) = 5\delta(t - 2) - 3\delta(t)\! $


System function

So, you want the system function? Easy. It is a simple application of something we covered way back in ECE 201, laplace transform. I personally call it DeCarlo transform, but that is another story entirely. Anyways, the following formula gets you the system function!


$ H(s) = \int_{-\infty}^{+\infty} h(t)e^{st}dt $


Note that $ s=j\omega\! $.


Here goes the math:


$ H(s) = \int_{-\infty}^{+\infty}[5\delta(t - 2) - 3\delta(t)]e^{-st}dt\! $


$ H(s) = \int_{-\infty}^{+\infty}5\delta(t - 2)e^{-st}dt - \int_{-\infty}^{+\infty}3\delta(t)e^{-st}dt $


Using what is known as the sifting property, we obtain the following result:


$ H(s) = 5e^{-2s} - 3\! $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett