Homework 4 Ben Horst: 4.1 :: 4.3 :: 4.4
System
y(t) = 3x(t) which is proven as an LTI system ( shown here)
Impulse Response
y($ \delta(t) $) = 3($ \delta(t) $)
=>impulse response = $ 3\delta(t) $
System Function
Find H(s):
H($ j\omega $) = $ \int_{-\infty}^{\infty}h(\tau)e^{-j\omega\tau}d\tau $, where $ j\omega $ is s.
H(s) = $ \int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $
H(s) = $ \int_{-\infty}^{\infty}3\delta(\tau)e^{-s\tau}d\tau $
H(s) = $ 3e^{-s}\int_{-\infty}^{\infty}\delta(\tau)e^{\tau}d\tau $
By the Sifting property, this is:
H(s) = $ 3e^{-s}e^0 $
thus,
H(s) = $ 3e^{-s} $
Example Response
Input
From previous part of homework:
$ x(t) = 2\sin(6t) + 4\cos(3t) $