Revision as of 16:24, 24 September 2008 by Pjcannon (Talk)

Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.

Defined Signal

$ x(t)=4sin(3t)+(1+6j)cos(2t)\! $


Solution

The fundamental period $ T\! $ is $ 2\pi\! $. Thus we use the equation $ \omega_0=\frac{2\pi}{T}\! $ to find $ \omega_0=1\! $
To find the value of $ a_0\! $ we simply plug and chug:
$ a_0=\frac{1}{2\pi}\int_0^T[4sin(3t)+(1+6j)cos(2t)]e^{0}dt $

$ =\frac{2}{\pi}\int_0^T4sin(3t)dt+\frac{1+6j}{2\pi}\int_0^Tcos(2t)dt $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010