Equations
Fourier series of x(t): $ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients: $ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.
Defined Signal
$ x(t)=4sin(3t)+(1+6j)cos(2t)\! $
Fourier series of x(t): $ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $
Signal Coefficients: $ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $.
$ x(t)=4sin(3t)+(1+6j)cos(2t)\! $