Revision as of 07:52, 27 September 2008 by Eblount (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Define a DT LTI System

Let the DT LTI system be: $ y[n]=x[n-5] $

Obtain the Unit Impulse Response h[n] and the System Function F[z] of the system

First to obtain the unit impulse response h[n] we plug in $ \delta{[n]} $ into our y[n].

$ h[n]=\delta{[n]-5} $

Then the system function F[z] is obtained by

$ F[z]=\sum_{m= - \infty}^{\infty}h[m]z^{-m} $

$ F[z]=\sum_{m= - \infty}^{\infty}\delta{[m-5]}z^{-m} $

since $ x[m]\delta{[m-5]}=x[-5] $ by the sifting property then:

$ F[z]=z^{-5} $

where z is an input into our system.

So when z^n is input into our system, we should get $ F[z]z^n=z^{-5}z^n $ back out.

Response of the system to the signal defined in Question 1

$ x(t)=(5+3j)cos(4t)+(1+2j)sin(3t) $



Go back to Homework 4_ECE301Fall2008mboutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett