Revision as of 09:50, 23 September 2008 by Serdbrue (Talk)

DT Periodic function

Find the Fourier Series coefficients of x[n]

$ x[n]=5cos(5/2\pi n +\pi) \, $
$ x[n]=5cos(5/2 \pi n +\pi) = \dfrac{5(e^{5/2 j \pi n+\pi}-e^{-5/2 j \pi n-\pi})}{2} \, $
$ x[n]= \dfrac{5}{2}(e^{5/2 j \pi n}e^{\pi}-e^{-5/2 j \pi n}e^{-\pi}) \, $
$ e^{\pi}=-1,e^{-\pi}=1 \, $
$ x[n]= \dfrac{5}{2}(e^{-5/2 j \pi n}-e^{5/2 j \pi n}) \, $
$ x[n]= \dfrac{5}{2}(e^{-2 j \pi n}e^{-1/2 j \pi n}-e^{2 j \pi n}e^{1/2 j \pi n}) \, $
$ x[n]= \dfrac{5}{2}(e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \, $

Note that,

$ 1 = e^{2\pi} \, $
$ e^{2\pi}*e^{-1/2\pi}=e^{3/2\pi}=e^{1/2\pi}e^(\pi)=-e^{1/2\pi} \, $
$ x[n]= \dfrac{5}{2}(-e^{-1/2 j \pi n}-e^{1/2 j \pi n}) \, $
$ x[n]= \dfrac{5}{2}(-2e^{1/2 j \pi n}) \, $
$ x[n]= -5(e^{1/2 j \pi n}) \, $
$ N=\dfrac{2\pi}{\pi/2}K $, where K is the smallest integer, that makes N an integer.
$ K = 1,N = 4\, $
$ a1=1/4\sum_{k=0}^{N-1} -5(e^{1/2 j \pi n})e^{- j 2\pi/N n} or :<math>x[0]=-1 \, $
$ x[1]=0 \, $
$ x[2]=1 \, $
$ x[3]=0 \, $
$ x[4]=-1 \, $

a0=average of signal = 0

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett