Revision as of 06:41, 19 September 2008 by Schmidtw (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

First, rewrite $ cos(2t) \, $ as a complex exponentional :

$ cos(2t) =\frac{[e^{j2x}+e^{-j2x}]}{2} $

Then, applying the system gives response $ y(t)\! $:

$ y(t) = \frac{[te^{-j2x}+te^{j2x}]}{2} $, (because the system is linear, the $ \frac{1}{2} $ factor remains)

Finally, factoring out the $ t\! $ and simplifying back into a sinusoid function yields:

$ y(t) = tcos(2t)\! $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang