Provided that:
(1) $ e^{j2t}\ $ ----------> System ----------> $ te^{-2jt}\ $
(2) $ e^{-j2t}\ $----------> System ----------> $ te^{2jt}\ $
(3) The System is Linear.
The following should hold true:
$ e^{j2t} + e^{-j2t}\ $ ----------> System -----------> $ te^{-2jt} + te^{2jt}\ $
The Key to approach this problem is: What is $ {e^{j2t} + e^{-j2t}\ over 2} $
- $ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $