Revision as of 18:42, 17 September 2008 by Jkubasci (Talk)

Here is a short list of different mathematical notations commonly used. Mathematicians use these to make proofs more compact and clearer (plus, it guarantees them that they still have jobs given the fact that the field Mathematics is centuries old :P ). While it may be difficult to get used to at first, these can make writing answers quicker, which may help on exams...

Special Sets

The following list is the shorthand way to describe several special sets (sets are simply a collection of numbers).


$ \,\mathbb{N}\, $ denotes the set of all natural numbers, i.e. {1, 2, 3, ...}

$ \,\mathbb{Z}\, $ denotes the set of all integers, i.e. {..., -2, -1, 0, 1, 2, ...}

$ \,\mathbb{Q}\, $ denotes the set of all rational numbers, i.e. all numbers that can be written as a ratio of two intege

$ \,\mathbb{R}\, $ denotes the set of all real numbers, i.e. any number without $ \,j\, $

$ \,\mathbb{C}\, $ denotes the set of all complex numbers, i.e. numbers of the form $ \,a+bj\, $, this includes rational numbers

Is a Element of

The symbol $ \,\in \, $ is read as "is a element of". It is used to describe a variable as a an element of a set. Examples include:


$ \,x\in \mathbb{R}\, $ is the shorthand way of saying "x is a rational number"

$ \,s,t\in \mathbb{Z}\, $ is the shorthand way of saying "s and t are an integer"

There Exists

The symbol $ \,\exists \, $ is read as "there exists". It is used to say that there exists a value that satisfies some condition. Examples include:


$ \,\exists t\in \mathbb{Z}\, $ is the short hand way of saying "there exists an integer t"

For All

The symbol $ \,\forall \, $ is read as "for all". It is used to say that a condition/ result applies for all elements in a set. Examples include:


$ \,\forall c\in \mathbb{Q}\, $ is the short hand way of saying "for all rational numbers c"

Some Commonly Used Notations

$ \,\exists \epsilon \in \mathbb{R}\, $ such that $ \,|x(t)|<\epsilon , \forall t\in \mathbb{R}\, $ is read as "there exists some real number epsilon such that the function $ x(t) $ is bounded above by positive epsilon and below by negative epsilon, for all real values of t" or simply x(t) is bounded for all t.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva