Revision as of 10:08, 17 September 2008 by Dhopper (Talk)

Given:
$ e^{2jt} \rightarrow SYSTEM \rightarrow te^{-2jt} $

$ e^{-2jt} \rightarrow SYSTEM \rightarrow te^{2jt} $

Solve:
$ cos(2t) \rightarrow SYSTEM \rightarrow ? $

At this point, we must use Euler's relation to expand cos(2t) into exponentials. Then, we will be able to use the given inputs and corresponding outputs to come to a conclusion. $ cos(2t) = \frac{e^{2jt}+e^{-2jt}}{2} $

$ cos(2t) \rightarrow SYSTEM \rightarrow \frac{1}{2}te^{-2jt}+\frac{1}{2}te^{2jt} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood