Revision as of 16:50, 19 September 2008 by Nchopra (Talk)

Part B: The basics of linearity

System’s response to cos(2t)

Using Euler's formula, we get

$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} -> system -> t*{(cos{(2t)} - jsin{(2t)})}\, $
$ e^{(-2jt)} = cos{(2t)} - jsin{(2t)} -> system -> t*{(cos{(2t)} + jsin{(2t)})}\, $

$ cos{(2t)} = \frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} = $$ \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang