Revision as of 12:49, 14 September 2008 by Rfscott (Talk)

First let's take a quick look at the example systems' results to determine what the system does. What we know:
$ input \rightarrow system \rightarrow output\! $
$ e^{2jt} \rightarrow system \rightarrow te^{-2jt}\! $
$ e^{-2jt} \rightarrow system \rightarrow te^{2jt}\! $

It looks like the system is performing the following operation:
$ x(t) \rightarrow system \rightarrow tx(-t)\! $
When the preceding system is applied to $ cos(2t) $, we the get result:
$ cos(2t) \rightarrow system \rightarrow tcos(-2t)\! $

Therefore, the system's response will be $ t*cos(-2t) $.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang