Revision as of 07:12, 12 September 2008 by Amelnyk (Talk)

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

Example: Non-Linear

One-way


y[n] = 2*x[n]^3

x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++

                                 = a*2*x1[n]^3+2*b*x2[n]^3

x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++

Reverse-way


x1[n] -> (X)*a +++

             = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3

x2[n] -> (X)*b +++


However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3 the system is not linear because the two inflexive operations are not equal to each other.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva