(Question 6a)
(Question 6a)
Line 4: Line 4:
  
 
<math> X_k[n]=Y_k[n] \,</math>
 
<math> X_k[n]=Y_k[n] \,</math>
 
 
  
  
Line 11: Line 9:
  
 
<math> X_k[n]=\delta[n-k]\,</math>     
 
<math> X_k[n]=\delta[n-k]\,</math>     
 
  
  

Revision as of 07:16, 11 September 2008

Question 6a

I'm assuming k is the variable representing any fo.

$ X_k[n]=Y_k[n] \, $


where

$ X_k[n]=\delta[n-k]\, $


and

$ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $



Under this assumption the following system cannot possibly be time invariant because of the $ (k+1)^2 $ term.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett