(→Question 6a) |
(→Question 6a) |
||
Line 5: | Line 5: | ||
<math> X_k[n]=X_k[n] \,</math> | <math> X_k[n]=X_k[n] \,</math> | ||
where | where | ||
+ | |||
<math> X_k[n]=\delta[n-k]\,</math> | <math> X_k[n]=\delta[n-k]\,</math> | ||
and | and | ||
+ | |||
<math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math> | <math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math> | ||
Revision as of 07:13, 11 September 2008
Question 6a
I'm assuming k is the variable representing any fo.
$ X_k[n]=X_k[n] \, $ where
$ X_k[n]=\delta[n-k]\, $ and
$ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $
Under this assumption the following system cannot possibly be time invariant because of the $ (k+1)^2 $ term.