(→Question 6a) |
(→Question 6a) |
||
Line 3: | Line 3: | ||
I'm assuming k is the variable representing any fo. | I'm assuming k is the variable representing any fo. | ||
− | <math> X_k[n]=X_k[n] \,</math> where <math> X_k[n]=\delta[n-k]\,</math> and <math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math> | + | <math> X_k[n]=X_k[n] \,</math> |
+ | where <math> X_k[n]=\delta[n-k]\,</math> and <math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math> | ||
Revision as of 07:13, 11 September 2008
Question 6a
I'm assuming k is the variable representing any fo.
$ X_k[n]=X_k[n] \, $ where $ X_k[n]=\delta[n-k]\, $ and $ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $
Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math>
Under this assumption the following system cannot possibly be time invariant because of the $ (k+1)^2 $ term.