(Question 6a)
(Question 6a)
Line 3: Line 3:
 
I'm assuming k is the variable representing any fo.
 
I'm assuming k is the variable representing any fo.
  
<math> X_k[n]=X_k[n] \,</math> where <math> X_k[n]=\delta[n-k]
+
<math> X_k[n]=X_k[n] \,</math> where <math> X_k[n]=\delta[n-k]\,</math> and <math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math>
 
+
  
  

Revision as of 07:12, 11 September 2008

Question 6a

I'm assuming k is the variable representing any fo.

$ X_k[n]=X_k[n] \, $ where $ X_k[n]=\delta[n-k]\, $ and $ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $


Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math>

Under this assumption the following system cannot possibly be time invariant because of the $ (k+1)^2 $ term.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood