(Time-Invariant System)
(Time-Invariant System)
Line 14: Line 14:
  
 
<math>x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=(t-3)=x(t)=(t-3-t_0)\,</math>
 
<math>x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=(t-3)=x(t)=(t-3-t_0)\,</math>
 +
 +
  
 
If <math>x(t) \,</math> is first entered into the system, then time shifted:
 
If <math>x(t) \,</math> is first entered into the system, then time shifted:
  
 
<math>x(t) \longrightarrow y(t)=x(t-3) \longrightarrow y(t-t_0)=x(t-t_0-3)\,</math>
 
<math>x(t) \longrightarrow y(t)=x(t-3) \longrightarrow y(t-t_0)=x(t-t_0-3)\,</math>
 +
 +
 +
 +
Thus this system is T.I.

Revision as of 06:42, 11 September 2008

Time-Invariant System Definition

A time invariant system is a system that produces equivalent results for the following cases:

1. A time shifted input $ x(t+t_0) \, $ is entered into the system.

2. An input $ x(t) \, $ is entered into the system then time shifted by $ t_0 \, $.

Time-Invariant System

Consider the system: $ y(t)=x(t-3) \, $

If $ x(t) \, $ is first time shifted, then put into the system:

$ x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=(t-3)=x(t)=(t-3-t_0)\, $


If $ x(t) \, $ is first entered into the system, then time shifted:

$ x(t) \longrightarrow y(t)=x(t-3) \longrightarrow y(t-t_0)=x(t-t_0-3)\, $


Thus this system is T.I.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett