(Time-Invariant System)
(Time-Invariant System)
Line 13: Line 13:
 
If <math>x(t) \,</math> is first time shifted, then put into the system:
 
If <math>x(t) \,</math> is first time shifted, then put into the system:
  
<math>x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=(t-3-t_0)\,</math>
+
<math>x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=(t-3)=x(t)=(t-3-t_0)\,</math>
 +
 
 +
If <math>x(t) \,</math> is first entered into the system, then time shifted:
 +
 
 +
<math>x(t) \longrightarrow y(t)=x(t-3) \longrightarrow \y(t-t_0)=x(t-t_0-3),</math>

Revision as of 06:41, 11 September 2008

Time-Invariant System Definition

A time invariant system is a system that produces equivalent results for the following cases:

1. A time shifted input $ x(t+t_0) \, $ is entered into the system.

2. An input $ x(t) \, $ is entered into the system then time shifted by $ t_0 \, $.

Time-Invariant System

Consider the system: $ y(t)=x(t-3) \, $

If $ x(t) \, $ is first time shifted, then put into the system:

$ x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=(t-3)=x(t)=(t-3-t_0)\, $

If $ x(t) \, $ is first entered into the system, then time shifted:

$ x(t) \longrightarrow y(t)=x(t-3) \longrightarrow \y(t-t_0)=x(t-t_0-3), $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin